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Write tests you love, not hate



What does the following test check?



What does this test check?
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What does this test check?
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Call to component under test (CUT)

Configuration of mocked objects

VerificationSet the next  activation code
Register new user
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Too much boilerplate code
• Tests are hard to understand
• Writing tests is a lot of effort

The Fragile Test Problem
• Adjusting tests after a minor change 

takes two days
• Tests generate too many false positives

Tests are running too long

→ No one likes writing tests
https://imgs.xkcd.com/comics/compiling.png

Common Problems with Unit Testing



Okay, no one likes writing tests. So what?!
The consequences of a bad test structure (simplified)
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What if…
The consequences of a good test structure (simplified)
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Oct-24

Agenda

Common problems with Unit Testing

Increase readability 
by getting the basics right

Reduce boilerplate code 
by using Trainers and Entity Builders

Resolve the Fragile Test Problem 
by decoupling tests and implementation

Speed up slow tests 
by abstraction of the platform



Increase readability
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http://xunitpatterns.com/Test%20Utility%20Method.html

https://cucumber.io/docs/gherkin/reference/

Call to component under test (CUT)

Configuration of mocked objects

Verification

Set the next  activation code
Register new user

Extract method with Given / When / Then



Increase readability
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http://xunitpatterns.com/Test%20Utility%20Method.html

https://cucumber.io/docs/gherkin/reference/

when

given

then

Set the next  activation code
Register new user

Extract method with Given / When / Then



Increase readability
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Extract method with Given / When / Then

when

given

then

https://martinfowler.com/bliki/GivenWhenThen.html



Increase readability
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Explicit relationship between Given and Then

when

given

then



Getting the basic right
for tests already gets you pretty far.



So, we are done now, right?

Thank you for your attention! 
It was a pleasure ☺
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Of course not.
• Our Test Class is still a mess 

containing almost only 
boiler plate code.

• We cannot reuse the given…
and then… methods for 
other test cases.
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Test Boilerplate
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Entity Builders simplify test setup

https://github.com/casid/jusecase-builders-generator



Trainers
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Problem: Configuring mocked objects is very repetitive and verbose



Trainers
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Encapsulate the configuration in separate classes called Trainers

…



Trainers
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Encapsulate the configuration in separate classes called Trainers

…
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• Configuration of mocked objects outside of the test classes 
-> increased readability
-> increased reusability

• Generic Trainers can be developed, that further simplify the test setup

Trainers
Benefits



Entity Builders and Trainers 
simplify the setup of the test fixture.
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Fragile Test Problem
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Definition
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Fragile Test Problem
Definition
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Fragile Test Problem
Definition
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Fragile Test Problem
Definition
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Fragile Test Problem
Definition
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Fragile Test Problem
Definition
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Fragile Test Problem
Definition
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Fragile Test Problem
This is fine.



Fragile Test Problem
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This is no refactoring!



Fragile Test Problem

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 63

Tight Coupling



Fragile Test Problem
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Tight Coupling = Bad Design



Fragile Test Problem
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Solution: Loosely coupled tests

https://blog.cleancoder.com/uncle-bob/2017/10/03/TestContravariance.html
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Fragile Test Problem
Solution: Loosely coupled tests

https://blog.cleancoder.com/uncle-bob/2017/10/03/TestContravariance.html



That breaks the rules!

For every class X there should 
be a test class XTest.
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But wait.

Fragile Test Problem



Isn’t that indirect testing?

Typical example for indirect 
testing: Testing through the 
presentation layer

No. Here we test the result of 
the interaction between the 
services, not individual 
services.
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But wait.

Fragile Test Problem

http://xunitpatterns.com/Obscure%20Test.html#Indirect%20Testing



It's much harder now to 
identify the cause of a failing 
test!

No. You should work in small 
increments and run tests after 
every change. 

That makes it easy to identify 
the cause of a failing test.
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But wait.

Fragile Test Problem



Tests should be useful. 
So, let’s design them that way.
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Speed up slow tests
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External dependencies slow down test execution



Speed up slow tests
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Push all external dependencies outside and only test the logic

• Dependency Rule

• Outside concrete, inside 
abstract

-> Intrinsically testable



Speed up slow tests
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However, the reality is messy.



Speed up slow tests
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However, the reality is messy. So, let’s deal with it.



Don’t be afraid of tests.



Our journey

2003 – 2016
• Almost no automated tests

2016 – 2018 
• Test-Driven Development ideas
• Entity Builder and Trainer
• Establishment of use case tests

2019 
• Move from Jenkins to GitLab CI
• Run tests with every push 

2022
• Monorepo with parallel build

2024 
→
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… until now



• Removing and simplifying supporting frameworks to run tests

→ Fast test execution

Separating tests from external dependencies 

• Testing at the borders of what matters at this point

→ Tests and implementation can be structured independently

Decoupling test and implementation

• Entity Builders allow clear data definition

• Trainers simplify the configuration of dependencies

→ Reusable and simple setup

Defining scenarios simplified

• Given / When / Then gives structure

• Explicit relationship between pre- and post-condition

→ Increased readability

Getting the basics right
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Key Takeaways



Many people contributed to this work:

• Andreas Hager
• Niklas Keller 
• Martin Hofmann-Sobik
• And many others…

Email: 
jens.happe@chrono24.com

Substack:
https://whattt.substack.com/

LinkedIn: 
https://www.linkedin.com/in/jens-happe/

Thank you!

Maybe you? Join us!
https://about.chrono24.com/jobs/technology/

Feedback
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