
Dr.-Ing. Jens Happe
Head of Software Engineering - Chrono24
Co-Founder - Sparkteams

Write tests you love, not hate

What does the following test check?

What does this test check?

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 3

What does this test check?

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 9

Call to component under test (CUT)

Configuration of mocked objects

VerificationSet the next activation code
Register new user

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 10

Too much boilerplate code
• Tests are hard to understand
• Writing tests is a lot of effort

The Fragile Test Problem
• Adjusting tests after a minor change

takes two days
• Tests generate too many false positives

Tests are running too long

→ No one likes writing tests
https://imgs.xkcd.com/comics/compiling.png

Common Problems with Unit Testing

Okay, no one likes writing tests. So what?!
The consequences of a bad test structure (simplified)

Write tests you love, not hate | Jens Happe | Chrono24 20Okt-24

What if…
The consequences of a good test structure (simplified)

Write tests you love, not hate | Jens Happe | Chrono24 30Okt-24

Oct-24

Agenda

Common problems with Unit Testing

Increase readability
by getting the basics right

Reduce boilerplate code
by using Trainers and Entity Builders

Resolve the Fragile Test Problem
by decoupling tests and implementation

Speed up slow tests
by abstraction of the platform

Increase readability

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 33

http://xunitpatterns.com/Test%20Utility%20Method.html

https://cucumber.io/docs/gherkin/reference/

Call to component under test (CUT)

Configuration of mocked objects

Verification

Set the next activation code
Register new user

Extract method with Given / When / Then

Increase readability

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 34

http://xunitpatterns.com/Test%20Utility%20Method.html

https://cucumber.io/docs/gherkin/reference/

when

given

then

Set the next activation code
Register new user

Extract method with Given / When / Then

Increase readability

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 35

Extract method with Given / When / Then

when

given

then

https://martinfowler.com/bliki/GivenWhenThen.html

Increase readability

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 37

Explicit relationship between Given and Then

when

given

then

Getting the basic right
for tests already gets you pretty far.

So, we are done now, right?

Thank you for your attention!
It was a pleasure ☺

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 39

Of course not.
• Our Test Class is still a mess

containing almost only
boiler plate code.

• We cannot reuse the given…
and then… methods for
other test cases.

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 43

Test Boilerplate

Oct-24

Agenda

Common problems with Unit Testing

Increase readability
by getting the basics right

Reduce boilerplate code
by using Trainers and Entity Builders

Resolve the Fragile Test Problem
by decoupling tests and implementation

Speed up slow tests
by abstraction of the platform

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 46

Entity Builders simplify test setup

https://github.com/casid/jusecase-builders-generator

Trainers

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 47

Problem: Configuring mocked objects is very repetitive and verbose

Trainers

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 49

Encapsulate the configuration in separate classes called Trainers

…

Trainers

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 50

Encapsulate the configuration in separate classes called Trainers

…

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 51

• Configuration of mocked objects outside of the test classes
-> increased readability
-> increased reusability

• Generic Trainers can be developed, that further simplify the test setup

Trainers
Benefits

Entity Builders and Trainers
simplify the setup of the test fixture.

Oct-24

Agenda

Common problems with Unit Testing

Increase readability
by getting the basics right

Reduce boilerplate code
by using Trainers and Entity Builders

Resolve the Fragile Test Problem
by decoupling tests and implementation

Speed up slow tests
by abstraction of the platform

Fragile Test Problem

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 54

Definition

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 55

Fragile Test Problem
Definition

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 56

Fragile Test Problem
Definition

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 57

Fragile Test Problem
Definition

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 58

Fragile Test Problem
Definition

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 59

Fragile Test Problem
Definition

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 60

Fragile Test Problem
Definition

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 61

Fragile Test Problem
This is fine.

Fragile Test Problem

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 62

This is no refactoring!

Fragile Test Problem

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 63

Tight Coupling

Fragile Test Problem

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 64

Tight Coupling = Bad Design

Fragile Test Problem

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 65

Solution: Loosely coupled tests

https://blog.cleancoder.com/uncle-bob/2017/10/03/TestContravariance.html

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 66

Fragile Test Problem
Solution: Loosely coupled tests

https://blog.cleancoder.com/uncle-bob/2017/10/03/TestContravariance.html

That breaks the rules!

For every class X there should
be a test class XTest.

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 67

But wait.

Fragile Test Problem

Isn’t that indirect testing?

Typical example for indirect
testing: Testing through the
presentation layer

No. Here we test the result of
the interaction between the
services, not individual
services.

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 68

But wait.

Fragile Test Problem

http://xunitpatterns.com/Obscure%20Test.html#Indirect%20Testing

It's much harder now to
identify the cause of a failing
test!

No. You should work in small
increments and run tests after
every change.

That makes it easy to identify
the cause of a failing test.

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 69

But wait.

Fragile Test Problem

Tests should be useful.
So, let’s design them that way.

Oct-24

Agenda

Common problems with Unit Testing

Increase readability
by getting the basics right

Reduce boilerplate code
by using Trainers and Entity Builders

Resolve the Fragile Test Problem
by decoupling tests and implementation

Speed up slow tests
by abstraction of the platform

Speed up slow tests

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 72

External dependencies slow down test execution

Speed up slow tests

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 73

Push all external dependencies outside and only test the logic

• Dependency Rule

• Outside concrete, inside
abstract

-> Intrinsically testable

Speed up slow tests

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 74

However, the reality is messy.

Speed up slow tests

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 75

However, the reality is messy. So, let’s deal with it.

Don’t be afraid of tests.

Our journey

2003 – 2016
• Almost no automated tests

2016 – 2018
• Test-Driven Development ideas
• Entity Builder and Trainer
• Establishment of use case tests

2019
• Move from Jenkins to GitLab CI
• Run tests with every push

2022
• Monorepo with parallel build

2024
→

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 77

… until now

• Removing and simplifying supporting frameworks to run tests

→ Fast test execution

Separating tests from external dependencies

• Testing at the borders of what matters at this point

→ Tests and implementation can be structured independently

Decoupling test and implementation

• Entity Builders allow clear data definition

• Trainers simplify the configuration of dependencies

→ Reusable and simple setup

Defining scenarios simplified

• Given / When / Then gives structure

• Explicit relationship between pre- and post-condition

→ Increased readability

Getting the basics right

Okt-24 Write tests you love, not hate | Jens Happe | Chrono24 81

Key Takeaways

Many people contributed to this work:

• Andreas Hager
• Niklas Keller
• Martin Hofmann-Sobik
• And many others…

Email:
jens.happe@chrono24.com

Substack:
https://whattt.substack.com/

LinkedIn:
https://www.linkedin.com/in/jens-happe/

Thank you!

Maybe you? Join us!
https://about.chrono24.com/jobs/technology/

Feedback

	Slide 1: Write tests you love, not hate
	Slide 2
	Slide 3: What does this test check?
	Slide 4: What does this test check?
	Slide 5: What does this test check?
	Slide 6: What does this test check?
	Slide 7: What does this test check?
	Slide 8: What does this test check?
	Slide 9: What does this test check?
	Slide 10
	Slide 11: Okay, no one likes writing tests. So what?!
	Slide 12: Okay, no one likes writing tests. So what?!
	Slide 13: Okay, no one likes writing tests. So what?!
	Slide 14: Okay, no one likes writing tests. So what?!
	Slide 15: Okay, no one likes writing tests. So what?!
	Slide 16: Okay, no one likes writing tests. So what?!
	Slide 17: Okay, no one likes writing tests. So what?!
	Slide 18: Okay, no one likes writing tests. So what?!
	Slide 19: Okay, no one likes writing tests. So what?!
	Slide 20: Okay, no one likes writing tests. So what?!
	Slide 21: What if…
	Slide 22: What if…
	Slide 23: What if…
	Slide 24: What if…
	Slide 25: What if…
	Slide 26: What if…
	Slide 27: What if…
	Slide 28: What if…
	Slide 29: What if…
	Slide 30: What if…
	Slide 31
	Slide 32: Increase readability
	Slide 33: Increase readability
	Slide 34: Increase readability
	Slide 35: Increase readability
	Slide 36: Increase readability
	Slide 37: Increase readability
	Slide 38
	Slide 39
	Slide 40: Of course not.
	Slide 41: Of course not.
	Slide 42: Of course not.
	Slide 43: Of course not.
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Trainers
	Slide 48: Trainers
	Slide 49: Trainers
	Slide 50: Trainers
	Slide 51: Trainers
	Slide 52
	Slide 53
	Slide 54: Fragile Test Problem
	Slide 55: Fragile Test Problem
	Slide 56: Fragile Test Problem
	Slide 57: Fragile Test Problem
	Slide 58: Fragile Test Problem
	Slide 59: Fragile Test Problem
	Slide 60: Fragile Test Problem
	Slide 61: Fragile Test Problem
	Slide 62: Fragile Test Problem
	Slide 63: Fragile Test Problem
	Slide 64: Fragile Test Problem
	Slide 65: Fragile Test Problem
	Slide 66: Fragile Test Problem
	Slide 67: Fragile Test Problem
	Slide 68: Fragile Test Problem
	Slide 69: Fragile Test Problem
	Slide 70
	Slide 71
	Slide 72: Speed up slow tests
	Slide 73: Speed up slow tests
	Slide 74: Speed up slow tests
	Slide 75: Speed up slow tests
	Slide 76
	Slide 77: Our journey
	Slide 78: Key Takeaways
	Slide 79: Key Takeaways
	Slide 80: Key Takeaways
	Slide 81: Key Takeaways
	Slide 82

